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Abstract—In the future, when the labor force is reduced and 
costs are rising, a humanoid robot can be used to perform work 
that was originally for a human. In this paper, the function of 
object gripping is implemented on a small humanoid robot 
platform Image recognition is used to determine the position of 
objects on the table and the objects are clamped to the target area 
in accordance with the planned sequence. First, the robot stands 
in front of the table and uses the camera to identify the position of 
the object on the table. Then, it controls the arm to grasp the 
object and finally places the object in the collection area. Table 
tennis balls and paper cups are used to represent two different 
types of garbage. The robot judges the objects and order of 
picking, and places the objects in a trash can of the respective 
color next to the table. The computing performance of the robot is 
not very good, so this paper combines the greedy heuristic method 
and the traveling salesman method to plan the clamping sequence 
of the shortest distance. This method also reduces collisions of the 
arm with other objects on the table when the grasped object 
moves, avoids the object being overturned or dropped on the floor, 
and successfully achieves the task of grasping different objects 
and classifying them. 

Index Terms—Humanoid Robot, Kinematics, Action Planning, 
Pick-and-Place Objects 

I. INTRODUCTION 

In the field of robotics, a service robot is an important 
direction of development. To achieve functions such as assisting 
personnel to place objects, it includes key technologies such as 
image recognition, gripping strategies, and robotic arm control. 
How to determine the grip and placement of objects is also a 
topic worth exploring. 

In related research on object grasping, according to the force 
of the gripping contact area [1] or according to the shape of the 
object [2, 3], the appropriate picking point is found by 
considering the geometric constraints of the gripper [4]. 
Dex-Net [5] uses physical calculation such as the contact 
friction force of the object or the suction and sealing degree of 
the object surface, and selects a suction plan with a parallel 
opening and closing gripper or a vacuum-suction-cup gripper. 

In research on object placement, objects are usually put 
down from a height to a box or table without considering the 
consequences [1, 2, 6]. However, there has not been any 
benchmark research. Thus, there has been research on using 
multiple re-grasping attempts to achieve specific placement of 
objects [7, 8] and object repositioning [9]. 
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In related research on arm action planning, Tanaka et al. [10] 
used grids to classify object positions in space and achieve 
gripping planning and actions through reinforcement learning 
and learning planning [11]. Prakash and Kamal [12] believed 
that a robot must be able to work in an environment that changes 
over time and update instantly and respond to sudden changes. 
The online prediction planning and execution strategy can do 
this in a timely manner. Gosselin and Hadj-Messaoud [13] 
proposed robotic arm path planning with continuous cubic 
derivatives and artificial neural network algorithms for 
trajectory interpolation to ensure solutions for arm execution 
meet safety requirements.  

This paper adopts the greedy heuristic (GH) [14, 15] 
combined with the method of the traveling salesman problem 
(TSP) [16, 17] to achieve object grasping and plan a better 
grasping sequence, so that a robot can more efficiently achieve 
the object gripping function. 

II.   HUMANOID ROBOT SYSTEM 

A. System architecture 

The humanoid robot used to perform operations can be 
divided into two parts: the industrial PC (IPC) and the SoC 
FPGA (System on a Chip Field Programmable Gate Array) 
development board. The robot will first input an image from a 
camera to the IPC, identify the object through color information, 
and then control the head motor to align the center of the camera 
with the object. At this point, the position of the object can be 
calculated using the motor angle, and then the gripping position 
that the arm needs to reach is also calculated. This gripping 
position is sent to the FPGA as the target position of the arm. 
The FPGA then performs an inverse kinematics calculation to 
calculate the angles that the motors of each axis of the arm need 
to rotate. Finally, the motor is controlled to reach the target 
position for performing the clamping action. The system 
architecture is shown in Fig. 1. The robot used in this paper has 
23 DoF. As show in Fig. 2(a), each arm has 4 DoF. The gripper 
is shown in Fig. 2(b) is designed in the shape of rounded 
securities for easy clamping. 
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Fig. 1.  System architecture. 
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(a) Arm (b) Gripper 

Fig. 2.  Arm and gripper design. 

B. Object position calculation 

The system first uses the image to identify the position of the 
object on the screen, and then estimates the relative position to 
the robot according to the geometric relationship. After the 
center of the image is aligned with the object, it can be 
calculated based on the known height of the robot and the 
vertical angle of the head. The relationship is shown in Fig. 3. 
Here,   is the angle between the camera's viewing angle and 

the vertical line on the ground, hL  is the height difference 

between the robot camera and the table object, and dL  is the 

straight-line distance from the object to the robot. The 
calculation method is as follows: 

tan( ) hdL L    . (1) 

Regarding the straight-line distance from the robot to the 
object, according to the height of the robot and the angle of the 
head motor, the horizontal distance xR  and the vertical distance 

yR  from the robot to the object are calculated using the tangent 

relationship of the trigonometric function. The relationship is 
shown in Fig. 4. Here,   is the angle between the camera and 

the y-axis. The calculation method is as follows： 

sin( )x dR L    (2) 

sin( )y dR L     (3) 
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Fig. 3.  Schematic diagram of straight-line distance calculation by triangulation. 
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Fig. 4.  Schematic diagram of calculation of object distances xR  and yR . 

C.  Inverse kinematics 

Inverse kinematics refers to using the known coordinates 
and orientation of the end effector of the robot arm to reverse the 
angle of the joint of each axis. The humanoid robot has a 
four-axis robotic arm. Because of the configuration planning of 
the joint, the movement direction of the third axis will generate a 
singularity after being given the end effector position when 
calculating the angles of each axis and there will be infinitely 
many sets of solutions. As a result, an error occurs when the arm 
angle plan is generated. In order to reduce the difficulty of use 
and prevent singularities, the third axis is fixed and the system 
performs inverse kinematics analysis of the other three axes. 
The angle of the third axis is set to 0° and 90°. To picture this 
operation, using the left hand, 0° is when the robot's palm is 
facing the body and 90° is when the robot's palm is facing down. 

1) Third axis at 0° 
According to the geometric relationship, the position of the 

arm end effector can be set, and the calculation starts from the 
first axis in sequence, followed by the fourth axis, and finally the 
angle of the second axis. In Fig. 5, 1L  is the length of link 1, 2L  

is the length of link 2, and 3L  is the length of link 3. The joint 1 

angle 1  can be calculated from the end effector coordinates 

( , , )c c cx y z . In order to find the joint 4 angle 4 , it is necessary 

to first calculate D  by the law of cosines. Finally, the joint 2 

angle 2  is obtained from the calculated joint 4 angle 4 . It is 

calculated as follows: 

y
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z
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Fig. 5.  Analysis diagram of each axis with the third axis of the arm at 0°. 
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2) Third axis at 90° 
In Fig. 6, under this link configuration, the rotation axes of 

joint 1 and joint 4 are in the same direction, and the angle of 
joint 2 is related to the projection of the joint 4 link. First, the 
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joint 4 angle 4  can be calculated from the position of the end 

effector and the known conditions with the plane facing the joint 
4 axis. Then, the joint 2 angle 

2  and the joint 1 angle 
1  can be 

calculated in sequence, and the calculation method is as follows: 
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Fig. 6.  Analysis diagram of each axis with the third axis of the arm at 90°. 

With the formula derived above, the motors of the 1st, 4th, 
and 2nd axes of the arm joint can be rotated to the angles of 

1 , 

4 , and 
2 , respectively, and the end effector of the arm can be 

controlled to move to the target position. 

III. OBJECT PICKING PLANNING 

A. Experimental scenario 

Fig. 7 illustrates the situation used in this study. As seen in 
the picture, the robot is standing in front of the table; the width, 
depth, and height of the table are 40 cm, 20 cm, and 25 cm, 
respectively. There are objects of different colors on the table 
representing different kinds of garbage, including orange table 
tennis balls and blue paper cups. There are circular holes with 
diameter 6 cm on both sides of the table, and there are orange 
and blue trash cans under the holes. The task to be performed is 
to put the orange table tennis ball in the orange trash can, and the 
blue paper cup in the blue trash can. Due to the limited arm 
length of the robot, the maximum gripping depth is 28 cm, 
which is greater than the depth of the table, so the workable area 
is shown in Fig. 8. The red framed area is the gripping area, and 
the blue framed area is the placing area. The width of gripping 
area is around 20 cm x 20 cm, and the placing area is around 40 
cm x 20cm. 

  
(a) Robot standing in front of the 

table 
(b) Ping pong balls, paper cups, and 

trash cans 
Fig. 7.  Illustration of the experimental scenarios. 
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Fig. 8.  Picking and placing areas. 

B. Object picking function 

To ensure the smooth movement of the arm and the claw, the 
object closest to the trash can is planned to be grasped first. This 
method ensures that the task can be performed smoothly and it 
minimizes the risk of other objects being touched when gripping. 
The method used is a combination of GH and TSP, which is 
used to find the object closest to the hole for clamping. The 
purpose is to reduce the distance the arm can move and also 
reduce the possibility of collision with other objects. Therefore, 
first object to be clamped will be the one closest to the hole. 
After grabbing the first object, the system recalculates the 
positions of the remaining objects on the table to find the next 
object closest to the opening. It repeats the above method until 
all objects are clamped. 

C. Object picking algorithm 

First, the positions of the object and of the trash can are 
identified through the image, and the distance di, ( 1i N  ) 
between each object and the trash can is obtained via a 
Euclidean distance calculation, where N represents the number 
of objects. Then, the object closest to the trash can is chosen as 
the reference value Di for the next clamping sequence. An 
example scene is shown in Fig. 9. The first grabbed object is 
directly designated as the object closest to the trash can, so the 
example will start from the second one. It is calculated as 
follows: 
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Here,  represents the weight of grabbing. The higher the value 

defined, the greater the weight, and it will be grabbed first. The 
distance in Fig. 9(b) is substituted into the formula if the 
position of the object is inconvenient during the clamping 
process. The clamping sequence according to object number in 
Fig. 9(a) is obtained as 1 4 2 5 3    . Therefore, this 
method can indeed arrange and plan according to the distance of 
the objects from left to right. 

  
(a) (b) 

Fig. 9.  Example of traveling salesman problem application 

IV.  EXPERIMENTAL RESULTS 

A. Object position calculation error 

The measurement method used in this study is the 
trigonometric method. However, due to the limitations of the 
mechanism, motor gear set, and motor control, each time the 
humanoid robot turns and stands, there will be different errors. 
Table I shows the results of object positioning for different 
positions on the table. The x coordinate is the distance along the 
width of the table, that is, the left and right sides of the robot: 0 
represents the standing position of the robot, 50 represents the 
position 50 mm to the left of the robot, and −50 represents the 
position 50 mm to the right of the robot. The y coordinate is the 
distance along the depth of the table, which is the front of the 
robot. The data in Table II are the errors between the positioning 
results and the actual position according to Table I. It can be 
seen that there is a smaller error. These errors are all within the 
allowable range and the arm can still grip objects normally. 
However, at the position 50 mm in front of the robot, especially 
on the left and right sides far away from the robot, there is a very 
large error. This is because, when the ping-pong ball and paper 
cup are too close to the robot, the camera cannot see the whole 
ping-pong ball or paper cup, and part of the viewing angle is 
blocked by the mechanism of the robot body, resulting in 
inaccurate positioning, so the object cannot be placed too close 
to the robot. 

TABLE I 
LOCATIONS OF OBJECT RECOGNITION (UNIT: MM). 

location 140 100 50 0 −50 −100 −140 

50 (75, 75) (62, 85) (59, 42) (54, 1) (−56.4,−44) (-60,−83) (−66,−102) 

100 (108, 131) (105, 93) (100, 46) (100, 2) (−102,−47) (−100,−91) (−106,−126) 

150 (148, 138) (149, 95) (152, 50) (148, −7) (148,−52) (−146,−102) (−147,−129) 

200 (192, 144) (194, 104) (195, 54) (196, 3) (−198,−54) (−196,−104) (−195,−146) 

TABLE II 
LOCATION ERRORS OF OBJECT RECOGNITION (UNIT: MM). 

location 140 100 50 0 −50 −100 −140 
50 42 7 1.5 3.8 0 10 26 

100 2 1 3 0.2 0 6 7 
150 5 4 2 2 1 2 9 
200 4 3 4 4 1 2 1 

 

B. Trash can on the left side of the table 

In this experiment, three ping pong balls and two paper cups 
will be placed on the table, and the red and blue trash cans are on 
the left side of the table, as shown in Fig. 10. The robot first 
records the position of the object and then calculates the distance 
from the trash can. The numbers in Fig. 10 represent the 
straight-line distance from the item to the trash can. The shortest 
distance is 9 cm to the leftmost ping pong ball and the farthest is 
19 cm to the rightmost ping pong ball. After end planning, the 
clamping sequence is as shown in Fig. 11, and the numbers are 
the the clamping sequence. The robot will pick up the object 
closest to the trash can. The gripping process of the robot is 
shown in Fig. 12. The first step is to start with the No. 1 table 
tennis ball on the far left, as shown in Fig. 12(a). It clamps the 
first ball, then, as shown in Fig. 12(b), it clamps the No. 2 paper 
cup that is closest to the leftmost blue trash can. Next, as shown 
in Fig. 12(c), the No. 3 ping pong ball that is closest to the trash 
can on the table is clamped. As shown in Fig. 12(d), the No. 4 
paper cup that is closest to the hole on the table is clamped. As 
shown in Fig. 12(e), the last No. 5 table tennis ball left on the 
table is clamped into the trash can. Finally, the clamping task is 
completed, and there is no object left on the table, as shown in 
Fig. 12(f). 

 

Fig. 10.  Distances between the objects and the trash cans. 

 

Fig. 11.  Object picking order. 

  
(a) (b) 

  
(c) (d) 
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(e) (f) 

Fig. 12.  Experiment with the trash can on the left side of the table. 

C. Trash cans located on both sides of the table 

In this experiment, three table tennis balls and two paper 
cups are placed on the table. The red trash cans are on the left 
side of the table and the blue trash cans are all on the right side 
of the table, as shown in Fig. 13. The robot first records the 
position of the object and then calculates the distance from the 
trash can. The numbers in Fig. 13 represent the straight-line 
distances from the item to the trash can. The shortest distance, 
6 cm, is to the leftmost ping pong ball and the farthest, 16.5 cm, 
is to the rightmost ping pong ball. After end planning, the 
clamping sequence is shown in Fig. 14, and the numbers are the 
clamping sequence. The robot will pick up the object closest to 
the trash can. The picking process is shown in Fig. 15. The first 
step is to start with the No. 1 table tennis ball on the far left, as 
shown in Fig. 15(a). After clamping the first ball, as shown in 
Fig. 15(b), the second table tennis ball, which is the second 
closest to the hole, is clamped. Next, in order to shorten the 
movement path of the arm gripping, as shown in Fig. 15(c), the 
No. 3 paper cup that is closer to the current arm is gripped. As 
shown in Fig. 15(d), it is the No. 4 paper cup that is closer to the 
blue trash can. As shown in Fig. 15(e), the last No. 5 ping pong 
ball left on the table is clamped into the trash can. Finally, the 
clamping task is completed, and there is no object left on the 
table, as shown in Fig. 15(f). 

 
Fig. 13.  Distances between the objects and the trash can. 

 
Fig. 14.  Object picking order. 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 15.  Experiment with trash cans on both sides of the table. 

V.  CONCLUSION 

This study used simple image color recognition and 
geometric relationships to locate objects on a table and 
simplified the four-axis arm of a humanoid robot into a 
mathematical model of a three-axis arm according to the task 
requirements. Inverse kinematics were used to control the robot 
with relatively simple arithmetic. Finally, the object clamping 
order was determined according to the distance between the 
object and the trash can. When the two trash cans were both on 
the left side of the table or were on either side, the gripping task 
was successfully completed. 

This study used only one robotic arm for picking and placing 
objects. In the following study, two robotic arms will be used 
together to increase the range and efficiency of the gripping. 
However, the path planning methods of both arms must be 
considered together to avoid mutual interference and collision 
during the clamping processes of the two arms. In the future, 
deep-learning training can also be performed on target objects in 
images. With an object recognition algorithm operated by a 
convolutional neural network, it is only necessary to add a 
variety of objects of the same type to the training data to achieve 
class-level object recognition, marking the location of the object, 
and then positioning it. It is not necessary for the user to 
pre-select which features to extract, but to make the model learn 
the features of the target object from large-scale data. 
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