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Abstract—Camera calibration is the basis of computer vision, 
and the quality of the calibration results directly determines the 
accuracy of a computer vision system. In order to make up for the 
deficiency of existing calibration methods and to improve 
accuracy, a novel calibration method is proposed, which can 
calculate the internal, external, and distortion parameters of the 
camera. Internal parameters and distortion are inherent 
properties of the camera, which can be easily calculated by 
package software and do not change. External parameters, 
however, are contingent on the real world and therefore subject to 
change. Thus, we designed a self-made mechanism, which works 
with the robot navigation system, to calculate them. Overall, this 
method can obtain the spatial relationship between the robot and 
the camera while improving the performance of the visual 
servoing system.   

 INDEX TERMS—Calibration, Mobile Robots, Robot vision 
systems.  

I. INTRODUCTION 

he camera projects the three-dimensional real world as 
two-dimensional images. And the key to finding the 

relationship between the projection and the real world is camera 
calibration, which is in turn related to many applications, 
including 3D reconstruction, visual detection, object 
localization, and camera localization [1, 2]. Camera calibration 
aims to find a matrix of camera parameters, including the 
parameters of the camera [3]. Intrinsic parameters model the 
internal geometry and optical characteristics of the image 
sensor. Extrinsic parameters are used to measure the position 
and orientation of the camera with respect to a world coordinate 
system. And distortion describes the manufacturing accuracy 
and the deviation created by the assembly process.  

Camera calibration methods can be divided into three main 
categories: traditional camera calibration methods, 
active-vision-based calibration methods, and camera 
self-calibration methods.  

Traditional camera calibration methods require shots to be 
taken of plane calibration boards, such as a checkerboard, 
which are then analyzed; this is the most common method. For 
example, direct linear transform (DLT) [4] regards the 
reprojection error as a cost function and minimizes it. The 
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results are less accurate than other methods due to the usage of 
linear techniques that ignore distortion. Another example is the 
two-stage technology [5], which is based on DLT. Tsai [5] 
considers linear optimization and iterative implementation, 
thereby effectively removing radial distortion effects 

The term active-vision-based calibration refers to motion 
information pertaining to either the camera or the measured 
object. The paper [6] describes a system in which odometry and 
camera are simultaneously calibrated to direct the differential 
drive used by the mobile robot. The calibration process needs 
wheel encoders, the camera, and several properly taken camera 
snapshots of a series of known landmarks. Methods in the same 
category also include Ma Songde’s triple orthogonal motion 
method [7] and Hartley’s camera-based pure rotation 
calibration [8]. 

Camera self-calibration methods originate from the idea that 
camera calibration should not be limited to pre-programmed 
scenes and camera angles. Faugeras [9] proposes a 
self-calibration method based on the Kruppa equation. This 
method establishes an equation for the direct relationship 
between two images; however, long image sequences can make 
the results difficult to converge. Hartley [8] gives a different 
method in which all images are taken from the same point in 
space. This calibration method is limited; however, its accuracy 
is not high, and its speed is slow. 

In addition, camera calibration methods should also be able 
to adapt to various new application scenarios. Tang et al. [10] 
propose a simultaneous calibration of odometry and camera for 
a differential drive mobile robot that only needs onboard 
measurements taken by wheel encoders, and snapshots of a set 
of known landmarks taken by an on-board camera. The 
two-wheel differential-driven mobile robot with a fixed camera 
obtains the extrinsic parameter by observing several visual 
landmarks and recording the measurements from both encoders. 
Most vision-based industrial robots use eye-in-hand, and paper 
[11] proposes a method to compute the transformation matrix 
between the end-effector and camera. It uses the pure 
translation of the end-effector both to get the rotation matrix 
and to find the translation matrix between the end-effector and 
camera. Another eye-in-hand calibration method [12] utilizes a 
chessboard and transformation to get the extrinsic parameter; a 
mean filter is then used to decrease the error.  

The paper presents a novel camera calibration mechanism, 
integrated into the mobile robot system, for improving the 
performance of the visual servoing system with advanced 
mobile robots.  

II.  CAMERA MODEL 

The concept of the camera model comes from pinhole 
imaging. The image is obtained by reflecting the light off an 
object and passing it through a pinhole, although the obtained 
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image will be upside down. To make the mathematical formula 
simpler, the pinhole camera model is organized into another 
equivalent form. That is, the pinhole position is exchanged with 
the image plane, so the obtained image is the same as the 
original one. A schematic diagram of the entire camera model 

[13] is shown in Fig. 1. The world coordinate system  F
world

 is 

converted to the camera coordinate system  F
camera

  through 

extrinsic parameters, and the intrinsic parameters are used to 
convert the camera coordinate system to the pixel coordinate 

system  F
pixel

 through the image coordinate system  F
image

. The 

pinhole point is reinterpreted as the projection center, and the 

principal point  ,  c
x y

c  is the intersection of the image plane 

and the optical axis z. 
 

 
Fig. 1. Camera Model [13].  

 

As shown in Fig. 1. above, a three-dimensional observation 
point is converted from the world coordinate system to the 
camera coordinate system through translation and rotation 
whose process is shown in equation (1). Using homogeneous 
coordinates to represent three-dimensional coordinate points 
can combine matrix addition and multiplication. 
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The use of similar triangles to project the points of the 

camera coordinate system onto the image coordinate system is 
shown in equation (2). Moreover, the equation (3) indicates that 
the form of matrix multiplication is transformation from the 
camera coordinate system to the image coordinate system. 
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However, what we want are the pixels in the pixel coordinate 

system in camera applications. Therefore, the image needs to be 
sampled and quantized on the imaging plane. We can transform 

the points of the image coordinate system to the pixel 
coordinate system by scaling and translation. The methods for 
dividing the  ,x y  of the image coordinates by the actual 

length of each pixel  ,  ddx y  and for moving the original 

corresponding image origin to the pixel origin  
0 0
,  vu  are 

shown in equation (4). Moreover, equation (5) indicates that the 
form of matrix multiplication is transformation from the image 
coordinate system to the pixel coordinate system.  
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The mathematical formula for the complete camera model is 

shown in equation (6). When pixel coordinates in the pixel 
coordinate system, u and v, are non-orthogonal, the term 

cotf

dx


  is used, otherwise it will be zero. 

 

0

3 1 3 1

0

0

3 1 3 1

0 2 1

cot
0

1
0 0  

0 0 0 1sin
1

0 0 1 0 1

cot
0

1
     0 0  

0 0 0 1
0 0 1 0

1 1

W

W

Wc

W Wx

W W

y

W Wc

f f
u Xdx dxu

R T Yf
v v

ZZ dy

f X Xf u
dx

R T Y Y
f v M M

Z ZZ







 

 

 
   

                        
  

  

                        
1

W

W

W

X

Y
M

Z

  
   
   
   
   

  

 

(6) 

 
With these parameters of the camera model, the pixel 

position can be transformed to obtain the world coordinate of 
the target point. The use of a lens, instead of an ideal pinhole, 
can further enhance the light source, but it also brings image 
distortion. There are two main types of distortion: radial 
distortion and tangential distortion. 
 
A. Radial distortion 

This type of distortion is mainly caused by greater bending 
when the light passes through the edge of the lens. Fig. 2. shows 
the two types of radial distortion, and it follows from equation 
(7) that the image is increasingly distorted as the distance r  is 
farther from the center. 
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Fig. 2. Type of radial distortion [14]. 

 

B. Tangential distortion 

This kind of distortion is due to a manufacturing defect in the 
lens whereby the lens and the image plane are not completely 
parallel. Fig. 3. shows the type of tangential distortion and 
equation (8) indicates the correction method. 
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Fig. 3. Type of tangential distortion [14].  

 
Therefore, when the intrinsic parameters are corrected, in 

addition to the geometric model of the camera, a 5 × 1 distortion 
vector will also be obtained. 
 

III. INTRINSIC PARAMETERS 

The geometric model of the camera and the distortion model 
of the lens can be obtained through the intrinsic parameters of 
the camera. Any surface that is flat and has a regular pattern can 
be used as a calibration mark, and we use the calibration marker 
as shown in Fig. 4. in this paper. 
 

 
Fig. 4. The calibration marker (9 × 6, 30 mm).  

 

Planar homography shown in Fig.5. is used to map the 
object plane of three-dimensional homogeneous coordinates to 
the image plane, and 0Z   is selected to define the object 
plane to increase the generality of the application. Although the 
planar homography matrix has nine elements, it actually only 
has eight degrees of freedom plus one constraint, as shown in 
equation (9). Thus, we can use four points that are not collinear 

with any three points to provide eight equations to solve H. 
Furthermore, each new frame provides eight equations and 
leaves six new unknowns including three rotations and three 
translations, and the remaining two equations can be used to 
solve the unknowns of the intrinsic parameters. In addition to 
the preset mean square error minimization, OpenCV also 
provides three fitting methods: Random Sample Consensus 
(RANSAC), Least Median of Squares (LMeDS), and 
progressive sample consensus (PROSAC). RANSAC 
calculates a variety of random samples and keeps the sample 
with the most normal values, LMeDS minimizes the median, 
and PROSAC is weighted RANSAC. 

 
Fig. 5. Planar homography from object plane to image plane. 

 

11 12 13

21 22 23

31 32 33

2 2 2 2 2 2 2 2 2
11 12 13 21 22 23 31 32 33 1

h h h

h h h

h h h

h h h h h h h h h

 
   
  

        

H  
(9) 

 
As discussed above, we can use a planar homography matrix 

to represent the calculation of the intrinsic and the extrinsic 
parameter matrices, as shown in equation (10). Thus, 
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The movement of the camera in space is defined by six 

extrinsic parameters, while the four intrinsic parameters, 
belong to the physical properties of the lens, are invariant. And 
each checkerboard frame can only provide four corner points, 
which can introduce eight equations. Therefore, in the case of K 
frames, the solution conditions are 2 4 6 4 2K K K       . 
This means that at least two 3 3  checkerboard images are 
required to solve the calibration problem. Using a larger 
checkerboard or collecting more images can reduce noise and 
improve numerical stability. 

According to 
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decomposition equation can be obtained in equation (11). 
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Since the rotation vector is orthogonal, the inner product of 

the vectors is zero and the size of the vectors is equal. Through 
these two constraints, the equation can be listed, as shown in 
equation (12). 
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is a symmetric matrix. Therefore, we can write 
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the form of a six-dimensional vector inner product as shown in 
equation (13). Furthermore, we can use equation (13) to rewrite 
equation (12) into matrix form as shown in equation (14) where 

2 6 ,  KKA � is the number of the frame. When K 2 , the 

equation (14) can be solved for 

b, so the intrinsic parameters 

can be obtained by the closed solution of the B  matrix as 
shown in equation (15) [15]. 
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Then, using [16], the distortion coefficients of equations (7) 

and (8) can be found. 
Generally, when calibrating intrinsic parameters, there is an 

image at each angle, as shown in Figure 6. However, because 
the camera to be calibrated in this thesis is fixed on the chest of 

the robot, and the robot itself does not have the freedom to 
move up and down, we cannot get images like number five and 
number six. Therefore, a self-made mechanism with up and 
down movement (shown in Fig.7) is used to match the 
requirements and allow the robot to complete the calibration of 
the intrinsic parameters. The use of the self-made mechanism 
and robot navigation system to set up the calibration process is 
shown in Fig. 8. Because images of the chessboard taken from 
different views are required, the five points in Fig. 8 are made 
twice, one is when the putter is in the low state, and the other is 
when the putter is in the high state. Fig. 9 shows the image 
captured by the camera on the robot for intrinsic parameter 
calibration and finally using ten chessboard images. 
 

 
Fig. 6. The shooting angle and position of camera 

 

 
Fig. 7. A self-made mechanism with up and down movement.  

 

 
Fig. 8. Top view of equipment setup. 

 

 
Fig. 9. The image captured by the camera on the robot for intrinsic. 

Finally, the average result is calculated through intrinsic 
parameter results, as shown in equation (16). 
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IV. EXTRINSIC PARAMETERS 

The extrinsic parameters are mainly used to solve the 
transformation relationship between the camera coordinate 
system and the robot base coordinate system, and this 
relationship can then be used to transform the feature points 
seen by the camera into an orientation that the robot can 
understand, or transformed into the map coordinate system. In 
this paper, we use the addition of two space vectors as shown in 
equation (17) to obtain the relationship between the camera 
coordinate system and the base coordinate system as shown in 
Fig. 10. First, the RGB-D camera plus the previously calibrated 
intrinsic parameters are used to obtain the vector from the 
camera coordinate system to the corners of the chessboard, and 
then the geometric relationship of the mechanism, the robot 
odometry and 2D map (shown in Fig. 11) to obtain the vector 
from the base coordinate system to the corners of the 
chessboard. 
 

Base Camera Base Chessboard Chessboard Camera   V V V  (17) 

 

 
Fig. 10. Schematic diagram of the transformation between camera coordinates 
and robot coordinates. 

 

 
Fig. 11. 2D Map for camera calibration. 

 
In order to improve the accuracy, we take six corners on the 

chessboard to average like number seven, fourteen, seventeen, 
twenty-four, twenty-seven and thirty-four as shown in Fig. 12. 

The translation in the transformation relationship can be 
obtained in equation (18).  Because of the geometric design of 
the robot, the X axis of the base will be parallel to the z axis of 
the camera. Therefore, we obtain the rotation relationship 
between the base and the camera as shown in equation (19). 
Finally, a more accurate result is obtained by averaging over n 
iterations of the experiment as shown in equation (20). 

 

 
Fig. 12. The corners on the chessboard.  
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V.  EXPERIMENT RESULTS 

A. Introduction to Mobile Robot 

Our laboratory developed a novel mobile robot called Mobi 
which can be divided into four parts: head, upper body, lower 
body, and hands and arms, as shown in Fig. 13. The hardware 
architecture of new mobile system is shown in Fig. 14. 
 

 
Fig. 13. The mobile robot.  
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Fig. 14. The hardware architecture of new mobile system. 

 

B. Introduction to the Calibration Mechanism 

In the self-made mechanism, we use an Arduino as the 
control board, an L298N as the motor drive board, and the 
Wi-Fi module (ESP-01) for communication. The entire circuit 
design is shown in Fig. 15. The control process is the following: 
The Wi-Fi module receives the signal and then transmits it to 
the Arduino, which then controls the L298N, making the linear 
actuator rise or fall. To achieve this, the main program sends the 
Arduino ascending and descending commands through HTTP 
as shown in Fig. 16. 
 

 
Fig. 15. The entire circuit design for camera calibration. 

 

 
Fig. 16. Calibration system communication method. 

 

C. Deployment 

1) Intrinsic parameters 
In accordance with the above, the robot is instructed to visit 

the five points on the map to obtain images of the checkerboard 
from different heights, and then use ten images to complete the 
calibration of the internal parameters as shown in Fig. 17. It 
collects fifteen experimental data points as shown in Fig. 18, 
and then averages the results by removing outliers through 

standardization methods. The average and standard deviation of 
the original data is used to calculate the standardized score of 
the data, as shown in equation (21). The data with scores higher 
than 1 or lower than -1 are then removed, and the average of the 
remaining data is calculated as the results shown in Table Ⅰ. 
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(21) 

 

 
Fig. 17. Ten images of different poses for internal parameters calibration. 

 

 
Fig. 18. Ten images of different poses from the third perspective. 

 
Table I  

RESULTS OF INTRINSIC PARAMETERS 
 RGB Left Right 

 913.9624 638.4091 638.5296 

 913.9624 638.4091 638.5296 

 636.0864 641.2085 652.1973 

 365.1636 414.5412 408.8523 

 -0.0356 -0.0986 -0.0563 

 1.088 0.4083 0.0061 

 0.0041 0.0038 0.0029 

 -0.0014 -0.0026 -0.0008 

 -3.5439 -0.8484 0.1913 

Transformation 

0.984146 0.000972 0.177357 15.8159

0.013564 0.996644 0.080725 0.0732

0.176841 0.081851 0.980830 0.5748

0 0 0 1

Left
RGBT

 
   
  
 
 
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0.993642 0.000452 0.112589 50.4338

0.007121 0.998242 0.058841 0.1937

0.112364 0.059269 0.991898 3.4046

0 0 0 1

Left
RightT

  
  
 
 
 
 

 

 
2) Extrinsic parameters 

This set of intrinsic parameters is used to further solve the 
extrinsic parameters which specify the relationship between the 
camera and the base through the vector transformation with 
corner detection, depth camera, known mechanism geometry, 
and map. The standardization method is used to remove outliers 
in the data, just as in the method for solving extrinsic 
parameters, and the corner images are shown in Fig. 19. The 
result obtained by averaging away the outliers is 

measure
[0.156408 0.041839 0.798142]

T
T  , and the data are 

shown in Fig. 20. Finally, the relationship transformation from 
the base to the camera is shown in equation (22), which verifies 
the repeatability.  

To validate the accuracy of the calibration results, we also 
use the ruler to indirectly calculate the camera extrinsic 

parameter 
measure

[0.1505 0.0330 0.8030]
T

T  . The absolute 

error is less than 3 mm and the relative error is about 0.29%. 
The old method was to use CAD to measure parameters, 
however, the relative error is over 1%. Thus, the mobile robot 
has a more stable grasp of regular directional objects.  
 

0 0 1 0.156408

1 0 0 0.041839

0 1 0 0.798142

0 0 0 1

T

 
  
 
 
 

 
(22) 

 

 
Fig. 19. Ten images of different position for extrinsic parameter calibration. 

 

 
Fig. 20. Translation data (blue is data point, green is original data average, and 
red is final average).  

 

VI. CONCLUSIONS AND FUTURE WORK 

This paper provides solutions for the camera's internal and 
external parameters. This method can calculate the parameters 
by inputting multiple checkerboard images and adding robot 
odometry. Without the need for an expensive professional 
calibration board, the method uses data filtering and 
standardization to obtain the relevant transformation matrix 
with less error. Thus, the experimental results proved that this 
method improves the accuracy of robot tracking and grasping 
compared with the past methods. In the future, follow-up work 
related to the data process can be added; for example, the 
maximum likelihood method could be used to improve the 
estimation accuracy.  
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